Digital Indicator

SD24 Series

Communication Interface (RS-232C/RS-485)

Instruction Manual

Please be sure to provide the end user with these instructions.

Contents

1. Overview	2
2. Specifications	2
3. Connection with host	2
4. Communication parameters	3
5. Shimaden standard protocol	5
6. MODBUS protocol	9
7. Communication data addresses	14
8. Appendix	16

Preface

Thank you for purchasing a Shimaden product.

After making sure the product you have is the one you specified, get a good understanding of the instructions to ensure proper operation and handling.

This document provides information concerning the communication function for users of SD24 Series communication interfaces (optional). For details on SD24 operation and parameters, see the main instruction manual.

Safety precautions and precautions concerning equipment damage and other additional explanations are provided under the following labeling.

	Matters that could result in injury or death if instructions are not followed.
Caution	Matters that could result in equipment damage if instructions are not followed.

Note Additional explanations or matters requiring special attention.

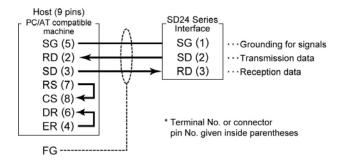
Copyright © SHIMADEN CO., LTD. All rights reserved.

1. Overview

This device supports two types of communication (RS-232C and RS-485). You can use the communication function to set and import various types of data from a computer.

RS-232C and RS-485 are the data communication standards established by the Electronic Industries Association of the U.S. (EIA). These standards apply to hardware but do not stipulate data transmission software. The customer must therefore get a good understanding of data transmission specifications and procedures prior to using the equipment.

2. Specifications

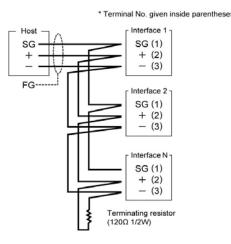

•	• .• .			
Communication type		EIA RS-232C/RS-485-compliant		
Communication system		RS-232C: 3-line half duplex system RS-485: 2-line half duplex multidrop (bus) system		
S	ynchronization system	Half duplex start-stop synchronization system		
C	ommunication distance	RS-232C: max. 15 m RS-485: Total max. 500 m (differs according to conditions)		
C	ommunication speed	2400, 4800, 9600, 19200 bps		
Tr	ransmission procedure	No procedure		
C	ommunication address	1 – 255		
N	umber of connections	Max. 31 units (RS-485)		
D	elay	1 – 100 msec		
С	ommunication protocol	Shimaden standard protocol, MODBUS ASCII, MODBUS RTU		
	Data format	7E1, 7E2, 7N1, 7N2, 8E1, 8E2, 8N1, 8N2		
ard	Control code	STX_ETX_CR, @_:_CR		
Shimaden standard	Checksum (BCC)	1. Add operation from start character to text end		
en st		2. Add operation from start character to text end and complement of 2 of the result		
lade		3. Exclusive disjunction (XOR) operation of add operation immediately after start		
Shim		character to text end		
0,		4. No BCC operation		
	Communication code	ASCII code		
SCII	Data format	7E1, 7E2, 7N1, 7N2		
JS A	Control code	_CRLF		
MODBUS ASCII	Error check	LRC check		
	Communication code	ASCII code		
RTU	Data format	8E1, 8E2, 8N1, 8N2		
US F	Control code	Not equipped		
MODBUS	Error check	CRC check		
MC	Communication code	Binary code		
Is	olation	Isolation for all		

3. Connection with host

3.1 RS-232C

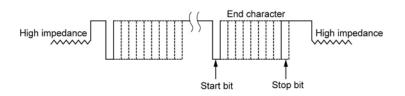
The communication interface is not equipped with a control signal terminal to be used as an input/output terminal (only equipped with ground terminal for transmission data, reception data and signals). Control signals must therefore be processed by the host. The following is a way to process control signals provided as an example. In practice, you must adjust according to the service environment and specifications.

Connection diagram


3.2 RS-485

Using an RS-485 interface enables you to connect to more than one SD24. If using an RS-485 interface with a computer, use a commercially available RS-485 converter.

An RS-485 interface requires a terminating resistor to be mounted on the terminal indicator. Connect a terminating resistor (approx. 1/2 W, 120Ω) between terminals 2 and 3.


The interface terminal of the device operates at high impedance until just before transmission starts. For details, see "3.3 State output control."

Connection diagram

3.3 State output control

In order to avoid collision of transmitted signals, transmission output is always high impedance while communication is not conducted or during reception. Status changes from high to normal impedance immediately prior to transmission, and reverts to high impedance as soon as transmission is complete. Up to 1 msec delay occurs after end character stop bit transmission is complete until impedance reverts to high impedance. If starting transmission when signal reception on the host side is complete, you should provide a delay of several msec.

4. Communication parameters

This section provides information on parameters related to communication for the interface.

4.1 Communication parameter screen display

Communication parameters are set/displayed by screens 1-25 to 1-32 of the mode 1 screen group. To switch from the basic screen (screen 0-0) to the first communication parameter screen (screen 1-25), perform the following procedure.

- 1. Press and hold the 🔘 key on the basic screen (screen 0-0) for at least 2 seconds.
- 2. When the initial screen (screen 1-0) of the mode 1 screen group is displayed, press the () key several times. The number of times to press the key depends on the number of optional functions the device is equipped with and their settings.
- 3. Pressing several times displays communication parameters communication mode screen (screen 1-25).
- 4. To switch to various setting screens, press the m key.

4.2. Communication parameters

This section provides information on parameters related to communication.

<u>1-25 Co</u>	mmunication mode
500	Sets/displays communication mode.
	LOC : Local mode. Enables reading of data through communication. COM : Communication mode. Enables setting and reading of data through communication.
Note	If you set communication mode to COM through communication, setting can no longer be carried out by front panel keys. You can however change from COM to LOC.
Range	LOC, COM (Init) LOC

1-26 Communication protocol		
Prot	Sets/display	s communication protocol.
,, , , , , , , , , , , , , , , , , , , ,	SHIM ASC RTU	: Shimaden standard protocol : MODBUS ASCII : MODBUS RTU
Range SHIM	, ASC, RTU	Init.) SHIM

1-27 Commun	ication address	
Rddr	31 SD24s, but actual comr	erface, you can connect up to nunication is carried out with nication addresses are set to
Range 1 - 25	5	Init.) 1

<u>1-28 Co</u>	mmunication data format
688	Sets/displays data format for communications.
	The parameter consists of a 3-digit number. Left digit : Data length (bits) 7 or 8 Middle digit : Parity E (even) or N (none) Right digit : Stop bit 1 or 2
Note	Only 7-bit format can be set for MODBUS ASCII. The initial setting is 7E1. Only 8-bit format can be set for MODBUS RTU. The initial setting is 8E1.
Range	7E1, 7E2, 7N1, 7N2, 8E1, 8E2, (Init) 7E1 8N1, 8N2

<u>1-29 Co</u>	1-29 Communication start character				
Sek	Sets/	displays communica	tion start character.		
	STX	Start character Text end	STX (02H) ETX (03H)		
		End character	CR (0DH)		
	ATT	Start character	@ (40H)		
		Text end End character	: (3AH) CR (0DH)		
Note	Start characte	r is not used for MODBL	JS ASCII or RTU.		
Range	STX, ATT		Init.) STX		

1-30 BCC ope	rating method
bec	 Sets/displays BCC operating method. 1: Add operation from start character to text end 2: Add operation from start character to text end and complement of 2 of the result 3: Exclusive disjunction (XOR) operation of add operation from start character to text end 4: No BCC operation
Note BCC	s not used for MODBUS ASCII or RTU.
(Range) 1-4	(Init.) 1

 Note

 Range
 2400, 4800, 9600, 19200 bps

 Init
 9600

 1-32 Delay time

 Image
 Sets/displays minimum delay time from when communication command is received till transmission. Delay (msec) = Setting value (count) x 1.0 (msec)

 Image
 In the case of RS-485, it may take a while for 3-state control by line converter and signal collision may occur in some cases. This can be avoided by setting longer delay time.

 Note
 Actual delay time from when the communication command is received until transmission is the total of the delay time and time it takes software to process the command.

 Range
 1 – 100 msec
 Init. 20

1-31 Communication speed

5. Shimaden standard protocol

This section contains information concerning Shimaden standard protocol.

5.1 Communication structure

Communication is carried out in block units. The computer/PLC (host) always functions as the master and the SD24 as the slave. Communication starts when a transmission command is sent from the host, and ends when the slave responds to the command. There may however be no response from the slave in the event of an error such as a data format error.

Note If end character reception is not completed within approximately 1 second after the start character is received from the host, the communication times out and the interface then stands by for the next command (start character). Therefore, set at least 1 second for the time out time on the host side.

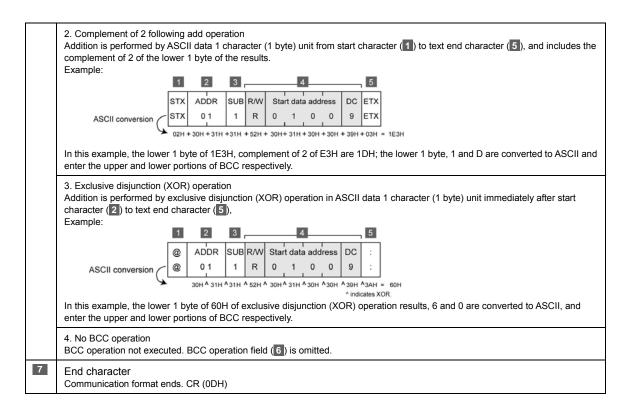
5.2 Recommended format

The interface supports all communication/data formats. The following are however recommended from the standpoint of convenience and to avoid confusion when setting.

Data format	7E1 (data length: 7 bits, parity: E, stop bits: 1
Control code	STX (STX_ETX_CR)
Checksum (BCC)	1 (add operation)

5.3 Communication format overview

Shimaden standard protocol consists of basic format portion I, text portion and basic format portion II. The format is same for data sent by the host and data sent back from the slave. The text portion format differs from BCC operating results.


5.4 Basic format portion

This section contains information concerning basic format portion I and II.

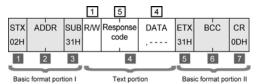
	1	2	3	4	5	6	7
	STX	ADDR	SUB	Text data	ETX	всс	CR
If start character is STX	02H		31H		31H		ODH
If start character is @	@	ADDR	SUB	Text data	:	всс	CR
	40H		31H		3AH		0DH

Basic format portion I Text portion Basic format portion II

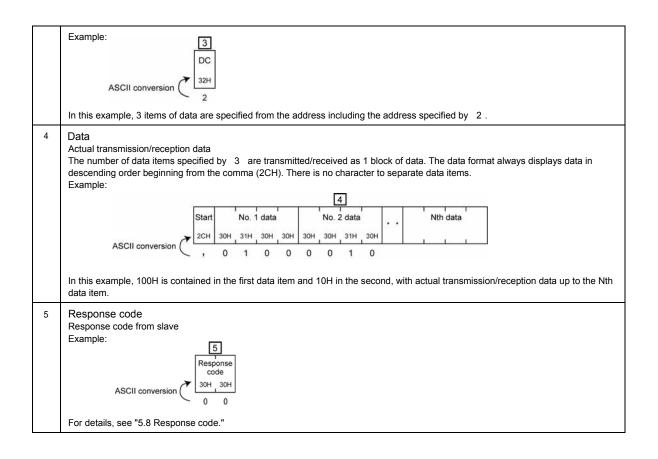
1	Start character Communication format start STX (02H) or @ (40H)
2	Communication address number of slave Communication addresses 1 – 255 are divided into 4 upper bits and 4 lower bits, and are converted to ASCII data. Example: If address is 100 (64H), the upper 4 bits is 36H and the lower 4 bits is 34H.
3	Sub-address number Set to 1 (31H) and cannot be changed.
4	Text data Actual reception/transmission data For details, see "5.5 Text portion."
5	Text end character End of text portion ETX (03H) or : (34H)
6	BCC operating results For details concerning 4 (text portion) of the following figure, see "5.5 Text portion."
	1. Add operation Addition is performed by ASCII data 1 character (1 byte) unit from start character (1) to text end character (5). Example: 1 2 3 4 5
	ASCII conversion STX ADDR SUB R/W Start data address DC ETX STX 0 1 1 R 0 1 0 0 9 ETX 02H + 30H + 31H + 52H + 30H + 31H + 30H + 30H + 30H + 03H = 1E3H
	In this example, the lower 1 byte of 1E3H, E and 3 are converted to ASCII, and enter the upper and lower portions of BCC respectively.

5.5 Text portion

This section contains information concerning the text portion. The **4** portion explained above applies to this. The format of the text portion differs for master and slave.

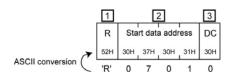

Communication command format (master)

This section contains information concerning format of data sent from master (host).



Communication response format (slave)

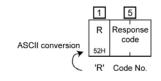
This section contains information concerning format of data sent from slave.


1	Command R' (52H) or 'W' (57H) R' (read): Reading of various types of slave data (received by host) W' (write): Writing of various types of data to slave (sent from host)
2	Start data address First data address of read source / write destination. For details on communication data addresses, see "7. Communication data addresses." Example: ASCII conversion This example shows the address of PV bias.
3	Number of data items Number of read/write data items In the case of a series of continuous data addresses, can be set for the entire series of addresses. Values that can be specified in the case of R (read) are 0 – 9 (1 – 10 units); in the case of W (write), 0 (1 unit) can be specified (the actual number of data items however is the specified value plus 1).

5.6 Read command

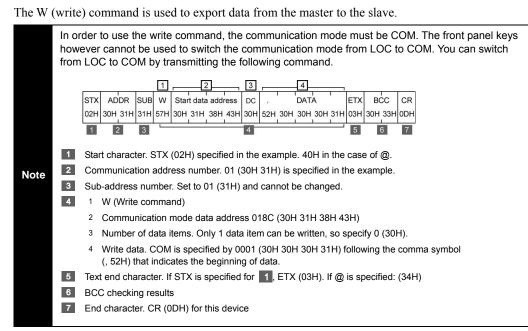
The 'R' (read) command is used to import data from the master to the slave.


Communication command format (master)

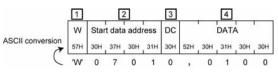

- 1 Indicates read command. 'R' (52H)
- 2 Start address of read data
- ³ Number of read data items 0 9 can be specified. In the case of a series of continuous data addresses, can be set for the entire series of addresses. The actual number of data items is one more than the specified value.

Communication response format (slave)

Under normal circumstances

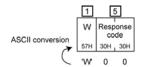


Under abnormal circumstances

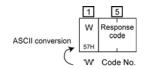


- 1 Indicates read command. R (52H)
- 5 Response code 00 (30H 30H) under normal circumstances
- Actual read data
 Always starts with command symbol: , (2CH)
 Data of the value specified by the master communication command format 3 (number of data items) + 1 is read.
- 1 Indicates read command. R (52H)
- 5 Response code Code number is inserted according to the state. For details, see "5.8 Response code."

5.7 Write command


Communication command format (master)

- 1 Indicates write command. W (57H)
- 2 Start address of write data
- 3 Number of write data items. The value is always 0 (number of write data items is always 1).
- 4 Actual write data Always starts with command symbol: , (2CH). There is only 1 write data item.


Communication response format (slave)

Under normal circumstances

Indicates write command. W (57H)
 Response code. 00 (30H 30H) under normal circumstances

Under abnormal circumstances

- 1 Indicates write command. W (57H)
- 5 Response code. Code number is inserted according to the state. For details, see "5.8 Response code."

5.8 Response code

Response code for Shimaden standard protocol is as follows. Error code except for 00H (30H 30H).

Response code	Condition	Description
00H (30H 30H)	Normal response	Normal response code for command
07H (30H 37H)	Format error	Format of the text portion differs from the established format
08H (30H 38H)	Address / number of data items error	Differs from established data address and number of data items
09H (30H 39H)	Data error	Write data outside setting range
0AH (30H 41H)	Execution command error	Execution command cannot be accepted
0BH (30H 42H)	Write mode error	Data including write prohibited data was written.
0CH (30H 43H)	Optional item error	Data including data of option the device is not equipped with was read/written.

Note

With the response code, the lower the number the higher the priority ranking is. If more than one error occurs at the same time, only the response code with the lowest number is returned.

5.9 No response processing

If any of the following errors occurs while data is being received from the host, the slave waits for the next data from the host without sending response data.

- Hardware error occurs (framing, overrun, parity).
- Communication address number does not match.
- Other than specified start character (STX or @).
- Sub-address is other than 1 (31H).
- Command type is other than 'R' or 'W.'
- Other than specified text end character (EXT or :).
- BCC operating results differ.
- End character is other than CR (0DH).

6. MODBUS protocol

This section contains information concerning MODBUS protocol.

6.1 Communication structure

MODBUS protocol is communication protocol developed for PLC by Modicon Inc. (AEG Schneider Automation International S.A.S.).

MODBUS protocol includes ASCII and RTU transmission modes. With ASCII mode, 8-bit binary command data is divided into 4-bit segments and converted to ASCII before sending. With RTU mode, parity data is sent without converting it to ASCII. Devices connected to the same network must be set to the same mode.

With MODBUS protocol as well, the host is the master and SD24 device is the slave; communication is always started by the host and ended by response from the slave.

6.2 Message format

MODBUS ASCII mode

MODBUS ASCII mode message format is as follows.

1	2	3	4	5	6
:	ADDR	FUNC	DATA	LRC	CRLF
3AH					ODH OAH

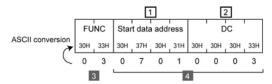
1	Header Beginning of message format. Set to 3AH and cannot be changed.						
2	Communication address number of slave Communication addresses are divided into 4 upper bits and 4 lower bits, and are converted to ASCII data. For example, if address is 100 (64H), the upper 4 bits is 36H and the lower 4 bits is 34H. Communication address setting range for this device is 1 – 100.						
3	Function code Command for slave. For details, see "6.5 Function code."						
4	Data Actual reception/transmission data.						
5	LRC check Results of LRC check (horizontal redundancy check) Check by complement of 2 following add operation. Complement of 2 following add operation Data from communication address number (2) to (4) is converted to binary data (1 byte) in 2-character (2-byte) ASCII data, added, and the complement of 2 of lower 1 byte of the results is included. Example: 1 2 3 4 5 6 i ADDR FUNC DATA LRC CR LF						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
6	Trailer End of message format. Set to CR (0DH) and LF (0AH) and cannot be changed.						

MODBUS RTU Mode

MODBUS RTU mode message format is as follows.

BLAN	1 2 3 4 NK ADDR FUNC DATA CRC BLANK
1	Communication address number of slave Sets communication address value. For example, if address is 100 (64H), the address is 64H. Communication address setting range for this device is 1 – 100.
2	Function code Command for slave. For details, see "6.5 Function code."
3	Data Actual reception/transmission data.
4	CRC check Results of CRC check (cycle redundancy check) CRC-16 operation method Example: 1 2 3 4 ADDR FUNC DATA CRC 01 03 0 1 0 0 0 0 0 1
	 In the explanation, "CR" indicates CRC data (2 bytes) during operation. 1. CR is initialized (FFFFH). 2. The XOR (exclusive OR) of CR and 1 is taken and the result is substituted for CR. 3. Checks if the lowest bit of CR is 0 or 1. If 0, CR is shifted 1 bit at a time to the right. If 1, the XOR (exclusive OR) of the value of shifting CR 1 bit at a time to the right and A001H is taken and the result is substituted for CR. 4. Step 3 is repeated 7 times more. 5. When step 3 is repeated a total of 8 times, just as with step 2, the XOR (exclusive OR) of CR and the value of the next field 2 is taken and the results is substituted for CR. 6. When step 5 is repeated 8 times, calculation is similarly executed using the value of the following field up to that last data before the CRC field (last data of 3).
	7. The upper and lower 8 bits of the ultimately calculated CR value are reversed and placed in the CRC field.

In MODBUS RTU mode, there is no field to indicate start of message. If blank time of at least 3.5 characters is detected, the device stands by to receive data. Data reception subsequently starts when the message passes on the same line. If blank time of at least 3.5 characters is again detected, data reception ends and the device stands by for the next message.

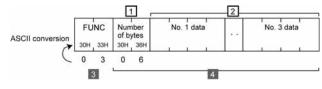

6.3 MODBUS ASCII mode commands

MODBUS ASCII mode includes read, write and loop-back commands.

Read command

The read command is used to import data from the master to the slave.

Communication command format (master)

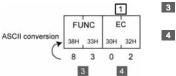

3 Function code. Indicates read command. 03H (30H 33H)

4 1 Start address of read data

2 Number of read data items 1H – AH (1 – 10 items) can be specified. In the case of a series of continuous data addresses, can be set for the entire series of addresses.

Communication response format (slave)

Under normal circumstances

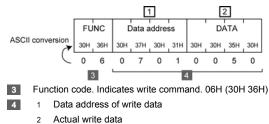


3 Function code. Indicates read command. 03H (30H 33H)

4 1 Number of read data bytes

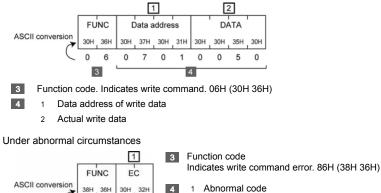
² Actual read data


Under abnormal circumstances


- 3 Function code Indicates read command error. 83 (38H 33H)
 4 1 Abnormal code
 - For details concerning error code, see "6.5 Function code."

Write command

The write command is used to export data from the master to the slave.



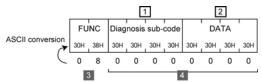
Communication command format (master)

Communication response format (slave)

Under normal circumstances

For details concerning abnormal code, see "6.5 Function code."

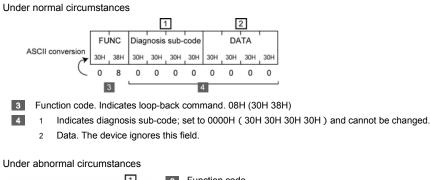
Loop-back command

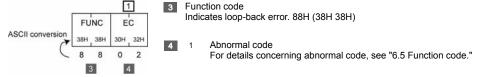

The loop-back command sends data from the master to the slave and a response is then sent back from the slave. Used to confirm existence of transmission destination device.

6 0

8

3




2

4

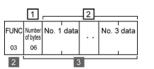
- 3 Function code. Indicates loop-back command. 08H (30H 38H)
- 1 Indicates diagnosis sub-code; set to 0000H (30H 30H 30H 30H) and cannot be changed.
 - 2 Data. The device ignores this field.

Communication response format (slave)

6.4 MODBUS RTU mode commands

MODBUS RTU mode includes read, write and loop-back commands.

Read command


This section contains information concerning the read command. The read command is used to import data from the master to the slave.

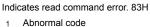
Communication command format (master)

1 2 2	Fur	nction code. Indicates read command. 03H
FUNC Start data address DC 3 03 07 07 00 03 2 3	1 2	Start address of read data Number of read data items 0001H – 000AH (1 – 10 items) can be specified. In the case of a series of continuous data addresses, can be set for the entire series of addresses.

Communication response format (slave)

Under normal circumstances

2	F	unc	tion	code	


- Indicates read command. 03H Number of read data bytes 3 1
 - Actual read data 2

Under abnormal circumstances

Function code 2

3

For details concerning abnormal code, see "6.5 Function code."

Write command

This section contains information concerning the write command. The write command is used to export data from the master to the slave.

	In order to use the write command, the communication mode must be COM. The front panel keys however cannot be used to switch the communication mode from LOC to COM. You can switch from LOC to COM by transmitting the following command.					
Note	1 2 ADDR FUNC Data address 01 06 01 88 1 2 3 4					
	Communication address number. In this example, 01 is specified.					
	2 Function code. 06					
	3 1 Communication mode data address 018C					
	2 Write data. COM specified by 0001					
	4 CRC checking results					

Communication command format (master)

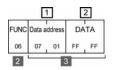
2

DATA

2 Function code. Indicates write command. 06
--

- 3 1 Data address of write data
 - 2 Actual write data

Communication response format (slave)


Under normal circumstances

1

FUNC Data address

06 07 01 FF FF

2

2 Function code Indicates write command. 06H

- 1 Data address of write data
- 2 Actual write data

Under abnormal circumstances

	1
FUNC	EC
86	01
2	3

 2 Function code Indicates write command error. 86H
 3 1 Abnormal code For details concerning abnormal code, see "6.5 Function code."

Loop-back command

This section contains information concerning the loop-back command. The loop-back command sends data from the master to the slave and a response is then sent back from the slave. Used to confirm existence of transmission destination device.

Communication command format (master)

	1	2		nction code icates loop-back command. 08H
FUNC	Sub-code	DATA	3 1	Indicates diagnosis sub-code; set to 0000H and cannot be changed.
08	00 00	00 00	2	Data. The device ignores this field.
2		3		

Communication response format (slave)

3

Under normal circumstances

	1]	E	2	
FUNC	Sub-c	ode	DATA		
08	00	00	00	00	
2	L	3	3		1

2 Function code

- Indicates loop-back command. 08H
- 1 Indicates diagnosis sub-code; set to 0000H and cannot be changed.
 - 2 Data. The device ignores this field.

Under abnormal	circumstances
----------------	---------------

	1
FUNC	EC
88	02
2	3

2 Function code Indicates loop-back error. 88H

1 Abnormal code

For details concerning abnormal code, see "6.5 Function code."

6.5 Function Code

The function code specifies the type of command to the slave. If the function code sent by the master is processed by the slave without error, the slave sends the same code back. If an error occurs, a function code with the highest bit of the original code set to 1 is sent back. Under abnormal circumstances, "abnormal code" is placed in the data field and sent back.

Function code

Function codes supported by the device are as follows.

Function code	Description
03 (03H)	Read command. Slave setting value and information read
06 (06H)	Write command. Write value to slave
08 (08H)	Loop-back command. Specifies to send back transmission data as is. Used to confirm existence of slave, etc.

Abnormal code

Abnormal codes supported by the device are as follows.

Abnormal code	Description							
1 (01H)	Error concerning function (non-existent function, etc.)							
2 (02H)	Address, number of data items error (Differs from established data address and number of data items.)							
3 (03H)	Data error (Write data outside setting range)							

6.6 No response processing

If any of the following errors occurs while data is being received from the host, the slave waits for the next data from the host without sending response data.

In the case of MODBUS ASCII mode, hardware error occurs (framing, overrun, parity).

- Communication address number does not match.
- If header not specified (:)
- If function code is other than 03H, 06H or 08H
- LRC operating results differ.
- If trailer is other than CR or LF (0DH 0AH)

For MODBUS RTU mode

- Hardware error occurs (framing, overrun, parity).
- · Communication address number does not match.
- If data received is other than 8 bytes per frame
- If function code is other than 03H, 06H or 08H
- · CRC operating results differ.

7. Communication data addresses

Supported data addresses are as follows.

- · For details on parameters, see the main instruction manual.
- R in the R/W field indicates read command only is supported; W indicates write command only and R/W indicated both commands are supported.

Address	Nam	ne	R/W				Conte	nts/value	range
0040	Type code		R	0x5344	4>ASC	l code		no raido	101.90
0041	Type code		R		4>ASC				
0041	Type code		R	0x0000		1 coue	24		
0042	Type code		R	0x0000					
						Landa	13/41		
0044	Version No. top		R		1>ASC			Ver. 1.00	0
0045	Version No. bot		R	0x3030)>ASC	I code	"00"		
	Optional item in	nformation	R						
	Bit 3	Bit 2	Alarn	ı I	Bit	1	Bit 0	Input	7
	0	0	None		0		0	Multi	-
	0	1	A contac	t (4)	(1	Voltage	e
0046	1	0	C contac	t (2)	1		0	Current	
0010		D ² 4					7		_
	Bit 5 0	Bit 4 0	Analog ou	utput / ci None		ation	-		
	0	1		nalog o			-		
		0		ommuni			1		
	· · ·			onnan	oution				
Address	Nam	ne	R/W			_	Re	marks	
0100	PV value		R				1.0	antarka	
	PV value PV max. value								
0101			R						
0102	PV min. value		R						
	Status LED		R						
0103		Bit 6 Bit			Bit 3	Bit 2			
	MAX N	AIN HO	LD CC	M	AL1	AL2	AL3	AL	.4
	Action flag		R						
0104									
0104	Bit 8 COM								
	Alarm flag		R						
0105	Bit 3	Bit 2	Bit 1		Bit 0]			
	AL4 output	AL3 output	AL2 outp	ut AL	1 output	1			
						,			
	Alarm latch out	put	R						
010d	Bit 3	В	it 2	E	Bit 1		Bit 0		
	AL4 latch stat	tus AL3 lat	ch status	AL2 lat	tch statu	s AL'	1 latch stat	us	
Address	Nam	ne	R/W			Setting	g range		Remarks
018c	Communication	n mode	W		0	LOC	1: COM		
	A1		14/				45		
	Alarm unlatchin	ng	W			1-	15	_	
0198	Bit 3	Bit	2	Bit	:1		Bit 0		
	AL4 unlatchin	ng AL3 unl	atching	AL2 unl	atching	AL1	unlatching]	
0199	PV max./min. v	alue reset	W				1		Note 1
Address	Nam	ne	R/W	Se	tting rang	je	Initial		Remarks
	AL1 code		R/W		0 – 5		1 (HA)	
	Number		0				1	1	2
0500	AL1 code	Non	: None		HA: Hi	aher lir	nit absolut	e value	LA: Lower limit absolute value
0000	Number		3				4		5
	AL1 code HA	I · Higher limit a	-	with latch		uar limit :		with latch	So: Scaleover
			R/W						
0501	AL1 setting value		nin measuring range Measuring range higher limit				imit		
0502	AL1 hysteresis		R/W		– 9999 u		20		
0503	AL1 Standby ad	ction	R/W	0: C	0: OFF 1: ON 0 (O			OFF)	

	AL2 code		R/W	()-11/0-5			2 (LA)			
	If AL1 c	ode is 1, 2, 3 or 4	1				If AL1 code is 0 or 5				
	Number AL2 code (0x0508)						Number	2 code (0x0508)			
	0	non: None					0				
	1	1 HA: Higher limit absolute value					1	HA: Higher li	imit absolute value		
	2	LA: Lower limit					2		mit absolute value		
	3	HA_L: Higher lin					3		r limit absolute value with latch		
0508	4	LA_L: Lower lim	it absolute	e value v	with latch		4		limit absolute value with latch		
	5	So: Scaleover					5	So: Scaleove	er		
	6	dHi: Deviation h		t							
		7 dLo: Deviation lower limit									
	-	8 dHL: Deviation higher/lower limit									
	9		higher limit with latch								
	10	dLo_L: Deviatio									
	11	dHL_L: Deviation	higher/lov	ver limit	with latch						
0509	AL2 setting	value	R/W	Within r	neasuring ra	ang	e Measu	ring range lower li	imit		
050a	AL2 hyster	esis	R/W	1 – 9999 uni			20 unit				
050b	AL2 Stand	by action	R/W	0: OFF 1: ON			0 (OFF)				
	AL3 code		R/W		0 – 5			0 (non)			
	Number		0			_	1	- ()	2		
0510	AL3 code		None		HA: High	ner	limit ab	solute value	LA: Lower limit absolute value		
0010	Number		3			-	4		5		
	AL3 code	HA_L: Higher limit al	bsolute value	with latch	LA_L: Lowe	r lin	nit absolute	value with latch	So: Scaleover		
0511	AL3 setting	value	R/W	Within r	neasuring ra	ana	e Measu	ring range lower li	mit		
0512	AL3 hyster	,	R/W	1 – 9999 unit			-	20 unit			
0513	AL3 Stand		R/W	0: OFF 1: ON							
		,				-		()	1		

Note 1: PV max./min. value reset (0x0199) If "1" is written, both max. and min. values are reset simultaneously.

Address		Name	R/W	Setting rar	nge	L I	nitial value	Re	marks	
	AL4 code		R/W	0 - 11/0 -	- 5 0 (non)					
	If AL3 c	ode is 1, 2, 3 or 4		·	lf	If AL3 code is 0 or 5				
	Number					Number AL4 code (0x0518)				
	0	non: None				0	non: None			
	1	HA: Higher limit	absolute	value	1	1	1 HA: Higher limit absolute value			
	2	2 LA: Lower limit absolute value					LA: Lower limit a	absolute value		
	3	HA_L: Higher limi	it absolute	e value with latcl	7 1	3	HA_L: Higher lim	nit absolute valu	ue with latch	
0518	4	LA L: Lower limit	t absolute	value with latcl	7 1	4 LA L: Lower limit absolute value with la				
	5	So: Scaleover			1	5	So: Scaleover			
	6	dHi: Deviation hi	gher limit			-				
	7	dLo: Deviation lo								
	8	dHL: Deviation h								
	9	dHi_L: Deviation	higher lir	mit with latch						
	10	dLo_L: Deviation	lower lin	nit with latch						
	11	dHL_L: Deviation	higher/low	ver limit with latch	١					
0519	AL4 setting	a value	R/W	Within measurin	a range	Measur	ing range lower limit			
051a	AL4 hyster	•	R/W	1 – 9999 u	• •		20 unit			
051b	AL4 Stand		R/W	0: OFF 1:		<u> </u>	0 (OFF)			
		by action			0	<u> </u>	. ,			
0580	Di-1 code		R/W	0-3		<u> </u>	1 (HLD)			
0581	Di-2 code		R/W	0-3			2 (rSt)			
	Number	DI-1/2 code (0x0	0580/0x0	581)						
	0	non: None								
	1	HLD: PV display								
	2	rSt: PV max./min.		set						
	3	L_rS: Alarm unlat	tching							
				0: EEP						
05b0	Communica	tion memory mode	R/W	1: RAM	0 (1		0 (EEP)			
				2: r_E						
				0: OFF						
0611	Key lock		R/W	1: Lock		0 (OFF)				
				2: Lock	2					
0700	PV slope		R/W	0.500 - 1.5	500		1.000	* Se	e note 2	
0701	PV bias		R/W	-9999 - 1000	0 unit					
0702	PV filter		R/W	0 - 100 sec	onds		0			
0703	Reserve		R/W							
0704	Input unit		R/W	0: °C 1:	°F		0	* Se	e note 3	
	Input range	e	R/W	Accor	ding to	input s	pecifications			
	Input typ	e Input range	(0x0705)	setting range			Remarks			
0705	Multi	1 - 19, 31 - 5				_				
	Voltage						ng range codes			
	Curren				5	Series r	main instruction	manual.		
0706	Reserve		R/W							
0700	11030110		1000	0: None						
0707	Input scale	e decimal	DAM	1: nnn.n						
0707	point posit		R/W	2: nn.nr			1			
				3: n.nnr				* See note 2		
0708	Input scale	e lower limit	R/W	-9999 - 30	000	Measuring range lower limit				
0709	Input scale	e higher limit	R/W	-9999 - 30	000	Measuri	ing range higher limit			
070A	Last digit display ON/OFF R/W				Shrt 0					

Address	Name	R/W	Setting range	Initial value	Remarks			
0720	Linear approximation input A1	R/W						
0721	Linear approximation input B1	R/W						
0722	Linear approximation input A2	R/W						
0723	Linear approximation input B2	R/W						
0724	Linear approximation input A3	R/W						
0725	Linear approximation input B3	R/W						
0726	Linear approximation input A4	R/W						
0727	Linear approximation input B4	R/W						
0728	Linear approximation input A5	R/W						
0729	Linear approximation input B5	R/W			Valid only when linear approximation is ON			
072a	Linear approximation input A6	R/W	-5.00 - 105.00	0.00	inear approximation is ON			
072b	Linear approximation input B6	R/W	-5.00 - 105.00		* See note 2			
072c	Linear approximation input A7	R/W						
072d	Linear approximation input B7	R/W						
072e	Linear approximation input A8	R/W						
072f	Linear approximation input B8	R/W						
0730	Linear approximation input A9	R/W						
0731	Linear approximation input B9	R/W						
0732	Linear approximation input A10	R/W						
0733	Linear approximation input B10	R/W						
0734	Linear approximation input A11	R/W						
0735	Linear approximation input B11	R/W						
0736	Linear approximation ON/OFF	R/W	0: OFF 1: ON	0	* See note 2			
0737	Low cut R/W		0.0 - 5.0	1.0	Valid only when square-root extraction is ON * See note 2			
0738	Square-root extraction	R/W	0: OFF 1: ON	0	* See note 2			
0739	Source frequency	R/W	0: 50Hz 1: 60Hz	0				

Note 2: Write possible when voltage/current input. Note 3: Write possible when thermocouple/R.T.D. input.

8. Appendix

8.1 ASCII Codes Table

	b7 - b5	000	001	010	011	100	101	110	111
b4 - b1		0	1	2	3	4	5	6	7
0000	0	NUL	TC7 (DLE)	SP	0	@	Р	`	р
0001	1	TC1 (SOH)	DC1	!	1	А	Q	а	q
0010	2	TC2 (STX)	DC2	"	2	В	R	b	r
0011	3	TC3 (ETX)	DC3	#	3	С	S	с	S
0100	4	TC4 (EOT)	DC4	\$	4	D	Т	d	t
0101	5	TC5 (ENQ)	TC8 (NAK)	%	5	E	U	е	u
0110	6	TC6 (ACK)	TC9 (SYN)	&	6	F	V	f	v
0111	7	BEL	TC10 (ETB)	'	7	G	W	g	w
1000	8	FE0 (BS)	CAN	(8	Н	Х	h	х
1001	9	FE1 (HT)	EM)	9	I	Y	i	У
1010	А	FE2 (LF)	SUB	*	:	J	Z	j	Z
1011	В	FE3 (VT)	ESC	+	;	К	[k	{
1100	С	FE4 (FF)	IS4 (FS)	,	<	L	١	Ι	-
1101	D	FE5 (CR)	IS3 (GS)	-	=	М]	m	}
1110	E	SO	IS2 (RS)	•	>	N	^	n	~
1111	F	SI	IS1 (US)	/	?	0	_	0	DEL

The contents of this manual are subject to change without notice.

Printed in Japan